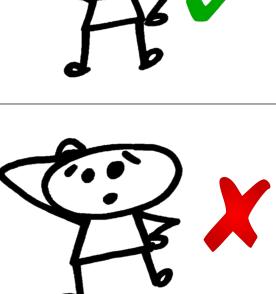
A Neurophysiological Investigation of Listening Effort in Normal Hearing Adults using fNIRS and Pupillometry

V


THE UNIVERSITY of **I**ENNESSEE KNOXVILLE

Background

Listening Effort

- When listening to speech becomes challenging, people must "try harder" to understand speech.
- Speech recognition ability \neq Listening Effort¹

Listen & Repeat Later...Recall Ideal Listening Conditions 6 Noisy Listening

- Sustained, daily listening effort is associated with social withdrawal, higher after-work fatigue, and increased need to take leave from work.²
- The neurophysiological mechanisms of listening effort are not fully understood.

Research Aims & Hypotheses

Research Aims

Conditions

- 1. Examine the effect of response type (vocalizing vs button-press) has on task difficulty and effort.
- 2. Investigate how semantic context and spectral degradation (vocoding) interacts with cortical activation and pupillary response.
- 3. Characterize listening effort by identifying relationships between measures of effort, performance, and neural activation.

Hypotheses

- 1. Difficulty of Spoken Response > Button Response task.
- 2. Frontal cortex Activity : High > Low Semantic Context
- 3. Effort (pupil size): Low Context, Degraded Speech > High Context, Speech in quiet
- 4. Speech recognition performance: High > Low Context
- 5. Hemodynamics in frontal and inferior parietal lobes associated with effortful processing
- 6. Hemodynamics in the frontal and temporal lobes associated with speech recognition performance.

Jessica Defenderfer^a, Jubin Son^b, Caglar Tas^b, Aaron Buss^b ^aSpeech and Hearing Science, University of Tennessee Health Science Center, USA ^bDepartment of Psychology, University of Tennessee, USA

Methods

Approach

Collect concurrent measurements of pupillary responses (via eye-tracker) brain activity (via fNIRS), and speech recognition performance in 41 normalhearing adults.

Dependent Measurements

- 1. Effort: Change in pupil size (Δ PPR)
- 2. Neural: Brain activity (Δ HbO)
- 3. Behavioral: Accuracy of participants' answers
 - Recognition Score (% correct)
 - Semantic Gain (% change from Low to High Context)

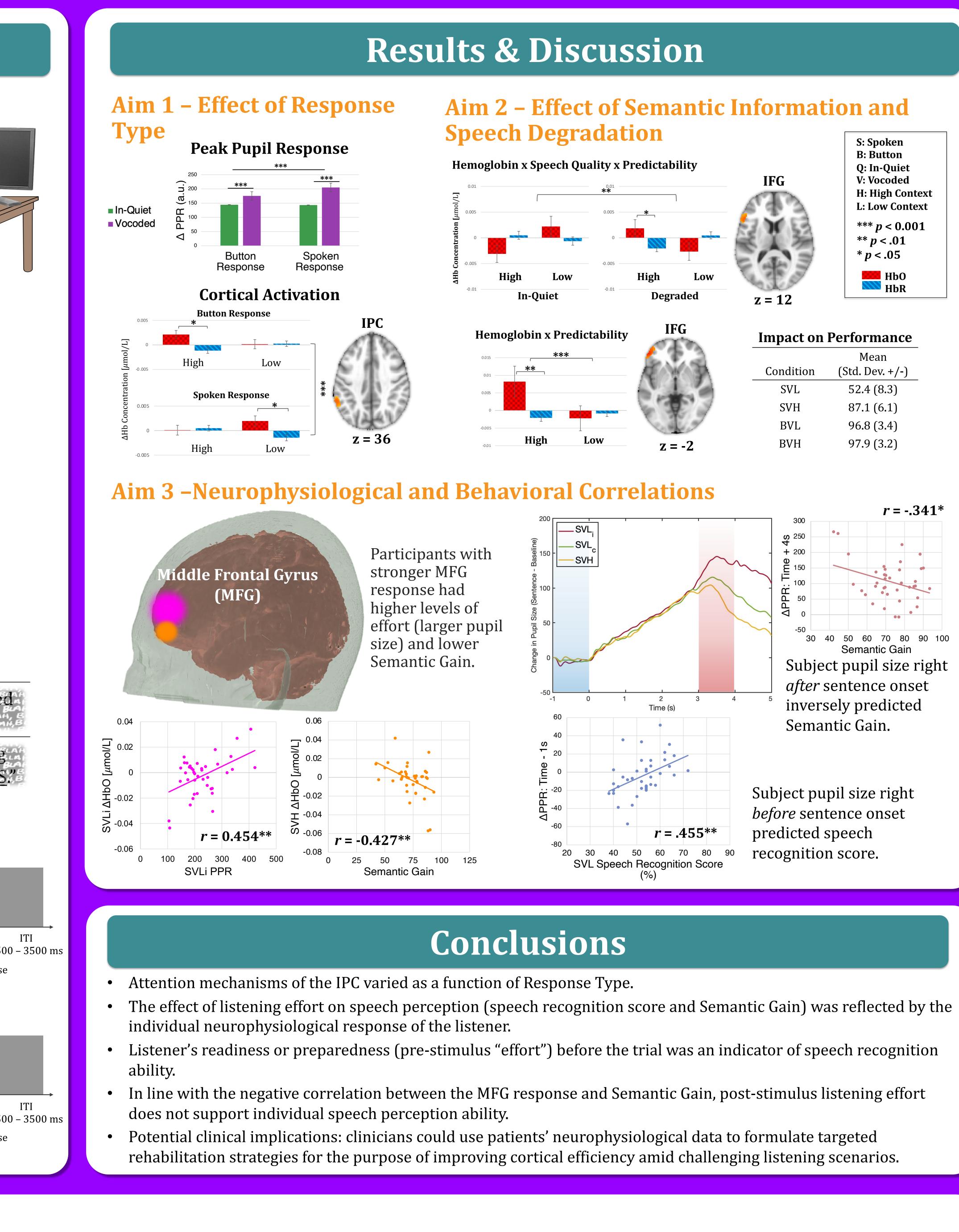
Task Manipulations

- 1. Speech Quality (In-Quiet, Degraded)
- 2. Predictability (High-, Low-Context)
- 3. Response Type (Spoken, Button Response)

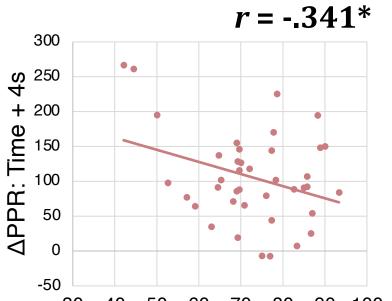
Conditions		Speech Quality		
		In-Quiet	Degraded	
ability	High	"The smoke filled	"The smoke filled	
	Context	his <u>LUNGS</u> ."	his <u>LUNGS</u> ."	
Predictal	Low	"He was talking	"He was talking	
	Context	about the <u>LUNGS</u> ."	about the <u>LUNGS</u> ?	

Experimental Task

Button Response Task


				•					
The bride wore a white gown.									
	+	+					DRESS MESS	CROWN GOWN	
←									
	Fixation	Silent Period	Sentence Presentation	1	- -	nse Delay		Response	
	~ ms	1500 ms	3000 – 4000 ms		, 120	00 ms	200	0 ms	1500
	RA Ini	ence	Sent	ence	Word C)ptions	Resp	onse	
	Tr	ial On	set	Off	set	Арр	ear	Off	set

Spoken Response Task


	The bride wore a white gown.				"GOWN"	
+	+					
Fixation ~ ms	Silent Period* 1500 ms	Sentence Presentation 3000 – 4000 ms	▲	se Delay 000 ms	Spoken Response 2000 ms	e 1500
	itiates Sent ial On		entence Offset	Dot Ch To I	0	sponse)ffset

References

¹Winn, M. B., & Teece, K. H. (2021). Listening Effort Is Not the Same as Speech Intelligibility Score. *Trends in Hearing*, 25. https://doi.org/10.1177/23312165211027688 ²Kramer, S. E., Kapteyn, T. S., & Houtgast, T. (2006). Occupational performance: Comparing normally-hearing and hearing-impaired employees using the Amsterdam Checklist for Hearing and Work. International Journal of Audiology, 45(9), 503–512. ³Defenderfer, J., Forbes, S., Wijeakumar, S., Hedrick, M., Plyler, P., & Buss, A. T. (2021). Frontotemporal activation differs between perception of simulated cochlear implant speech and speech in background noise : An image-based fNIRS study. NeuroImage, 240 (February), 118385. https://doi.org/10.1016/j.neuroimage.2021.118385

Aim 2 – Effect of Semantic Information and S: Spoken **B: Button**

Q: In-Quiet

V: Vocoded

H: High Context

L: Low Context

*** *p* < 0.001

** *p* < .01

* *p* < .05

Mean

(Std. Dev. +/-)

52.4 (8.3)

87.1 (6.1)

96.8 (3.4)

97.9 (3.2)

SVL

BVH

📕 HbO

W HbR

Semantic Gain Subject pupil size right *after* sentence onset inversely predicted Semantic Gain.

Subject pupil size right *before* sentence onset predicted speech