Negative Templates: Differences in Task Design May Lead to Contradicting Results

KNOXVILLE
Michael K. P. Mugno, A. Caglar Tas
The University of Tennessee, Department of Psychology

Introduction

We compared different accounts for how negative attentional templates are deployed in visual search
Automatic Rejection: Negative cues are automatically ignored ${ }^{1}$ Register-and-Destroy: Attention is initially captured by a few cue-matching distractors before searching other stimuli ${ }^{2,3,4}$
Alternatively, the task design may influence negative template use: Location/Feature-Based Recoding: Negative cues may be converted into a location cue ${ }^{4,5}$
Practice Effects: Negative template effects may simply be due to repeated practice with the same cue ${ }^{3}$

Conditions

Cue Type: Positive, Negative, Neutral Array Type: Separated, Intermixed

Hypotheses

Automatic Rejection: Pos $=$ Neg, both $<$ Neu Practice

Register-and-Destroy: Pos \neq Neg, both < Neu Exp. 1: Performance improves over block Feature Recoding: Sep < Mix Exp 2: RTs worse than Exp 1

Accuracy ($\mathrm{p}<.001$): Subjects were more accurate for positive cues ($\mathrm{M}=$.97) than negative ($M=.96$) and neutral ($M=.94$)

Cue Type ($p<.001$): Faster RTs for positive cues ($M=1,350 \mathrm{~ms}$) than negative ($M=1,650 \mathrm{~ms}$) and neutral ($M=1,770 \mathrm{~ms}$) cues, supporting Register-and-Destroy account.

Array Type ($p=.006$): Faster RTs for separated ($\mathrm{M}=1,560 \mathrm{~ms}$) than intermixed ($\mathrm{M}=1,590$ s) arrays, supporting Location/Feature-Based Recoding account.

Cue x Array ($p=.050$): Faster RTs for separated than intermixed in positive ($p=.008$) and negative ($p=.003$), but not for neutral ($p=.927$).

Practice Effects ($p=.353$): No significant RT improvement with time, arguing against the Practice Effect account.

Accuracy ($p<.001 ; p=.011$): Subjects were more accurate for positive cues (M $=.97$) than negative ($\mathrm{M}=.96$) and neutral ($\mathrm{M}=.94$) and were more accurate for separated ($M=.97$) than intermixed ($M=.96$).

Cue Type ($p<.001$): Faster RTs for positive cues ($M=1,400 \mathrm{~ms}$) than negative ($M=1,640 \mathrm{~ms}$) and neutral ($M=1,770 \mathrm{~ms}$) cues, supporting Register-andDestroy account.

Array Type ($p=.006$): Faster RTs for separated ($M=1,580 \mathrm{~ms}$) than intermixed ($M=1,630$ s) arrays, again, supports Location/Feature-based account

With cues being presented on a trial-by-trial basis, there is no opportunity to practice using the same strategy. This rejects the Practice Effect account.

Conclusions

1. Effects of Cue Type (Positive < Negative < Neutral) support Register-andDestroy account, but not Automatic Rejection account.
2. Effects of Array Type (Separated < Intermixed) support Location/FeatureBased Recoding account.
3. We found no evidence for Practice Effects

- In Exp. 1, subjects did not get faster as blocks advanced
- RT values were not significantly different between Exp. 1 and Exp2 ($p=.376$).

References

${ }^{\text {Carrisle, }}$ N., \& Nitka, A. (2019). Location
Visual Cognition, 27(3-4), 305-316.
${ }^{2}$ Moher, J. \& Egeth, H. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception $\&$ Psychophysics, $74(8)$, $1590-1605$.
${ }^{3}$ Bergren, N. . \& Eimer, M. (20202). The suidance of attention by templates for rejection during visual searct. Attention, Perception, \& Psychophysics, 83(1), 38-57.
4Beck. V.M. M. \& Hollingworth. A. (2015). Evidence for negative feature guidance in visual search is explained by
spatial recoding. lounnal f Experiment Spacker ${ }^{\text {Sheding. Journal of Experimental Psychology: Human Perception and Performance, 41(5), 1190-1196. }}$ ${ }^{\text {SBecker, M., Hemsteger, S., \& Peltier C. C. (2015). No templates for rejection: a failure to configure attention to ignore }}$ task-irrelevant features. Visual Cognition, 23(9-10), 1150-1167.

